Charles H. Lamson’s Aerial Experiments – 1896-97

Charles H. Lamson’s Aerial Experiments – 1896-97

     Charles H. Lamson, (1847-1930), of Portland, Maine, was a successful jeweler, watchmaker, bicycle dealer, and kite inventor.  His kites were not toys, but large-scale, custom-built, flying apparatus that were capable of lifting a man into the air.  He conducted experiments with his kites in the Portland area in the late 1890s, and achieved remarkable results.   Other experiments with Mr. Lamson’s kites were conducted at the Blue Hills Observatory in Milton, Massachusetts.  

Charles H. Lamson – 1896

     The following two newspaper articles relate to Mr. Lamson’s research. 

*********

     This article appeared in The Sun, (New York, N.Y.), on August 21, 1896.  

     THIS AIRSHIP DID SOAR

******

Leamson’s Kite Carried Up A Dummy Man 600 Feet.

******

The Rope Broke and Then the Airship Floated Off Gracefully and Came Down Without Jar or Injury to the Make-believe Passenger – Plan of Continuations

******

     Portland, Me., Aug. 20 – Charles H. Lamson performed a feat here to-day practically demonstrating that a large airship or kite capable of carrying a man can be floated successfully and steadily.  He raised his ship with a dummy man on it 600 feet.  The retaining rope broke when the ship was at that altitude.     

Lamson Kite-Airship – 1896

Had it not been for this break Mr. Lamson would have sent up a man to navigate his ship.  As it was, W. A. Eddy of Bayonne, N. J., an authority on aerial experiments, declared that Lamson’s achievement was the greatest step toward solving the problem of aerial navigation of the age.  Two records, at all events, Lamson made.  He flew the largest kite or airship ever floated.  He carried by means of this kite the heaviest weight to the greatest altitude on record.

     Mr. Lamson has been an experimenter in kite flying and construction for a long time.  He has been in constant correspondence with Lilienthal and other noted authorities for many years.  The kite which made the flight is an invention of Mr. Lamson and is called “The Lamson Airship.”   

     The kite, when in the air, resembles two large oblong boxes parallel to each other and attached to each other in the middle.  It took fifteen men to carry the kite or ship into the field from which it was to be sent up.  The retaining cord was a large braided window cord tested to a pull of 500 pounds.  This was made fast to a huge reel and four men attended to it.  About 400 feet of the rope was run out along the ground, and at a signal from Mr. Lamson the ship was released.  It quivered a moment and then steadily rose skyward. 

     Seated on the car of the ship was a dummy weighted to 150 pounds.  The ship carried it without any perceptible jar.  It rose to an altitude of 600 feet, and was rising steadily when with a sudden gust of wind, snap went the rope, showing that tremendous pressure was brought upon it by the soaring of the ship.  The ship floated out a half mile and descended as easily and gracefully as it went up.  Had a man been in the car he would not have been harmed in the slightest.    

Charles H. Lamson’s
Kite – Airship
1896

     Mr. Lamson in the construction of this ship has followed some of Mr. Hargrave’s ideas.  The point of similarity between the kite and Hargrave’s is in boxing the ends and making it double, that is, with two boxes or “cells,” as Hargrave calls them, with a space between.  This style of kite has great stability when in the air, and when floating freely always settles gently, like a parachute.

     Mr. Lamson built his airship after Hargrave’s general plan, but added improvements of his own to make it more manageable in the enlarged form.  In the first place, the rear cells were hinged on pivots near the center, so that their angle of inclination in reference to the wind and to one another can be changed at will.

     The passenger, by manipulating a lever, can keep the airship on an even keel, make it rise or fall, and direct its course in coming down.  Lateral steering can be accomplished by changing the weight to the other side of the center, the aerial vessel then turning toward the side where the weight is greatest.

     Each pair of wings is like the wings of a bird.  They are also ribbed fore and aft, and covered so that the stream of air can have its full lifting effect following the curve from front to rear, and preventing all shaking or flapping of the fabric. 

     Mr. Lamson’s plan of jointing the aeroplanes or aerocurves makes it possible to attach the flying cord on a bowsprit.  This makes it much easier to float the great kite than by Hargrave’s plan.  Mr. Clayton of Blue Hill Observatory estimated that the kite would pull at least 800 pounds if it were hung as Hargrave advises, but by Mr. Lamson’s arrangement the strain on the cord is greatly reduced, so that a few men can handle it in ordinary winds.

     A heavy windlass loaded with sand bags held the 2,000 feet of cord to-day.  All that was necessary to launch the airship was to raise its forward end a little and take a short run, when it sailed up into the air like a balloon.

     The ship presented a novel and beautiful appearance as it soared gracefully above the heads of 1,500 people, who stood gazing with open mouths at this strange monster of the air.  Nobody, to see the kite on the ground, would ever imagine that it would fly in mid-air, but Lamson demonstrated the fact that it would.  Mr. Eddy and other authorities said that to-day’s performance exceeded anything that Lilienthal or any former leader in this work has done.     

     Mr. Lamson was disappointed at the collapse of the rope, but was pleased at the success of the experiment.  He said:

     “The performance of my airship to-day satisfies me beyond all question that the ship in its present form will always ascend in a fair breeze and will remain flying any length of time under favorable atmospheric conditions; that a kite of this size will sustain and carry a man all night, and that the latter can regulate the direction of the kite in the air and descend.  I do not mean he can propel the kite.  This remains to be discovered, but I mean that, taking advantage of the air currents, he can guide the ship to a very large extent.  By Means of the guiding lever he can regulate the course up or down, and by shifting his weight can curve to the right or left.”

*********             

     This next article appeared one year later in the Waterbury Democrat, (Waterbury, CT.), on August 11, 1897.

SKYWARD ON A KITE

*********

A Maine Inventor Soars Upward On An Airship

*********

Wind is the Motive Power – He remained Poised in Air at Will and Might Ascend to Any Height He Pleased – He cannot However, Descend at Will.

     Charles H. Lamson of Portland, Me., has demonstrated to the world that he has invented a kite-airship which is capable of raising a man from the ground to almost any height and sustaining him in the air.  the weak point in his invention is that while he can raise himself with his kite at will, he cannot lower himself.  But this defect he hopes soon to remedy.

     The demonstration of his kite’s powers was made in the presence of a number of well-known scientists who have taken much interest in the study of aerial navigation, and they all agree that the results Mr. Lamson has attained are of great interest and value.  They look upon Mr. Lamson’s achievement as a distinct step forward towards the accomplishment of practical aerial navigation.

     Exactly what this last laborer in the field of aeronautics has done is to prove that it is possible for a man to ascend in the air on a kite, taking his seat while the kite remains stationary on the ground and then rising easily and safely with it on its upward flight.  Men have been sustained on kites before, but in all previous cases the kite has first been sent up into the air and the rider afterwards hauled up to it by means of pulleys and ropes. 

     Mr. Lamson’s kite sails away with its passenger, and if he could make come down when he wanted to, aerial flight would be, at least, a partial success. 

     The kite weighs about 100 pounds, and its rider sits in a boat-shaped car, which is suspended from between the two sets of box kites.  Attached to the bottom of this car are two bicycle wheels, by means of which the kite can be moved along the ground without danger of breaking the structure.  The axils are so placed that when the supporting surfaces are folded down the kite may be moved about by one man.   

     Mr. Lamson has made two ascensions, rising each time to about fifty feet from the ground and remaining poised in the air for fully half an hour each time.  He intends to add to his kite a feature which will make it possible for the rider in the car to raise and lower it at will so that it will either ascend or descend at his pleasure.  He will do this by passing a cord around the bowsprit of the machine and attaching one end of it to the forward sail, while the other end passes through the pulley in the guiding line and back into the rider’s hands.  Mr. Lamson refuses to say just what he thinks may be developed from this airship-kite of his, but he believes it will be possible for a man to ascend to almost any height in the air and remain there as long as he wishes and then descend to the ground in safety by pulling the cord, which will be attached to the forward sail.

     Last year Congress appropriated a certain sum of money to be expended in experiments with kites by the Blue Hill (Mass.) Meteorological Station and at this point , the kites furnished by Mr. Lamson are being used.  They are sent up into the clouds a thousand feet or more above the earth, and have instruments attached to them for recording temperature and the direction of air currents and other interesting data.              

Leopold Goldberger’s Airship – 1904

Leopold Goldberger’s Airship – 1904

     The following newspaper article appeared in The St. Louis Republic, (St. Louis, Mo.), on January 18, 1904. 

EXPECTS TO SAIL IN AIRSHIP FROM BOSTON TO ST. LOUIS

     Republic Special

     Boston, Mass., Jan. 17 – In a 30-foot cigar-shaped airship, the model of which he has just completed, Leopold Goldberger, a 22-year-old Hungarian, who came to Boston three months ago, says he is going to fly from this city to St. Louis and compete for the $100,000 airship prize.

     Goldberger’s ship will be of oiled silk in a meshwork of oiled cord, and will be filled with gas through a tube.  This is to be closed to prevent the escape of the gas, which can be utilized over and over again by the engine, in the center beneath the cabin.  There will be a wheel in the stern like the propeller of a steamer and one on each side like paddle wheels.  Each side wheel is to have half a dozen steel blades, two of which are at right angles, the others at 45-degree angles.

     The engine for the airship, Goldberger says, is being built for him in Budapest, and he expects that this machine will fly sixty-five miles an hour.  

Charles M. Davis’s Flying Machine – 1906

Charles M. Davis’s Flying Machine – 1906

     The following newspaper article appeared in the Daily Capitol Journal, (Salem, Oregon), on February 6, 1906.  Brighton is a neighborhood of Boston. 

THE LATEST IN AIRSHIPS

     Boston, Feb. 6 – Scientists and inventors in this city are highly interested in the announcement just made that Charles M. Davis of Brighton, has invented a flying machine which is constructed on entirely new and original principles and is said to promise remarkable results.  The inventor says that his machine is neither a freak nor a fake and will surely do what he expects it to do.  It has neither a gas tank nor a balloon attachment and not even wings, yet, it is said, that the model just completed ascended to any height without danger of a sudden drop.  The inventor has designed the machine primarily for use on a battleship.  The machine will move equally well in the air and in the water and can be easily carried like a life boat.  Three aluminum propellers furnish the motive power in either water or air.  Mr. Davis is trying to get some eastern capitalists interested in his invention and will soon start to build a model on a larger scale.     

    

The Lake Airships – 1908-09

The Lake Airships – 1908 – 09

 

     Christopher John Lake, (1847 – 1938), was an inventor, and father of Simon Lake, (1866 – 1945), the man who invented the Lake Submarine Boat. 

     On June 8, 1908, a short article appeared in The Hartford Courant, (Hartford, Ct.), announcing that Simon Lake, “inventor of the Lake submarine boat”, had patented a design for a new type of airship.    

     In the article Simon Lake was quoted as saying, “The new airship will be a combination of the dirigible balloon, the aeroplane, and the helicoppre.  I have been too busy with other work to devote the time that is necessary for building the new airship, and I will give a reward to the man who will build it and relieve me of the task.  I cannot go into the details of the invention at this time, but am satisfied it is one that has solved the problem of aerial navigation.”   

     It’s unknown if Simon’s airship was constructed, but the following article indicates that construction was begun in Bridgeport, Connecticut, on another airship designed by Simon’s father, Christopher Lake. 

     The following article appeared in the Norwich Bulletin, (Norwich, CT.), on September 28, 1909.

BRIDGEPORT AIRSHIP  

*********

Inventor Lake Hopes To Test It During October

*********

     Christopher J. Lake, the flying machine inventor, is completing the construction of his airship at Nutmeg Park, Bridgeport.  His force of mechanics are working daily, getting the invention ready for its first trials next month.  Just when the machine will be completed cannot be stated definitely, but Mr. Lake reiterated his statement that he expected to make his first flight during October.  

     He feels confident of having the machine ready for a trail flight before November 1, and within four weeks he ought to be able to give the first test of the machine.  He is working along novel lines and all of his theories have been demonstrated so that there should be no great question about the ability of the machine to fly. 

     There is a great deal of interest in this “Made in Bridgeport” flying machine which will be a combination of biplane and dirigible balloon.  When the airship is finished and private demonstrations made, Mr. Lake may give the public a chance to see it fly.  He is working now to demonstrate to his own satisfaction that his ideas of aerial navigation are correct.

     If he is successful, he will probably enter into the manufacture of the machines for sale the same as automobiles.  He says that no expert knowledge is required to operate an airship and that they can be manufactured for sale at reasonable cost.  Mr. Lake says that the time is not far distant when airships will be sold for pleasure purposes the same as automobiles, but perhaps not so numerously.  He is spending considerable money in the development of his machine and before the snow flies he may have other aviators at Nutmeg Park, the name of which would be changed to Lake Aerodrome.

***************

     Mr. Lake’s airship project was also mentioned in a publication called, Aeronautics – The American Magazine of Aerial Locomotion.  The brief article stated, “Charles J. Lake, of Bridgeport, father of Capt. Simon Lake, inventor of the Lake submarine boat, is at work on an apparatus of his own design and has secured an option from Stephen C. Osborne, owner of Hippodrome Park, where the new flying machine is to be built and tested.  Several men are now at work there to carry out the ideas of Mr. Lake, but their work is enshrouded in complete mystery, no one being privileged to give out any information in regard to it.

*************** 

     On September 16, 1909, it was reported in The Bridgeport Evening Farmer that an unidentified man had tried to break into the building where Mr. Lake’s airship was being constructed, but was driven off by a night watchman hired to guard the premises.   

     ****************

     Sources:

     Hartford Courant, “Lake Invents An Airship”, June 8, 1908

     Norwich Bulletin, “Bridgeport Airship”, September 28, 1909

     The Bridgeport Evening Farmer, “May Shoot Next Time”, September 16, 1909

     Aeronautics – The American Magazine Of Aerial Locomotion, “From Submarine To Airship”, September, 1909, page 111.

  

 

 

 

 

 

 

 

Boston’s Aeronaut Convention – 1896

Boston’s Aeronaut Convention – 1896

          The following article appeared in The Topeka State Journal, (Topeka, Kansas), on July 18, 1896.

CLOUD TOURISTS 

Aeronauts Will Hold A Unique Convention At Boston

*********

Flying Machine Contests

*********

Men of science rom all parts of the world will show the possibilities of aerial navigation.  

*********

     Folks afflicted with the balloon fever will have a chance to indulge the disease to the uppermost limit before long.  An aeronautical convention, the very first of its kind, is to be held in Boston in the early part of September, and flying sharps from all parts of the world will attend to show their fellows what wonderful things they have accomplished in the matter of touring among the clouds.  

     It is almost unnecessary to state that this convention may be the means of causing a revolution in the matter of quick transit.  The men who will attend it are not reckless, untutored spirits; on the other hand they are intelligent scientists who believe that aerial navigation is not only possible but that within a few years it will be a popular reality, indulged in by great financial corporations and by private individuals.  Popular interest in aeronautics has been aroused all over the world by the balloon expedition to the North Pole by Explorer Andree.  recent experiments by meteorological experts in kite flying have also excited the public mind in the matter, and it is fair to presume that when the famous aeronauts convene at Boston their doings will be heralded to all the ends of the earth.

     The convention has been arranged by the Aeronautical Society of Boston.  This is composed of only twenty men, but each one of the twenty is a man skilled in the work of the organization.  The society was only formed in May of 1895.  Professor William H. Pickering, the astronomer of Harvard College, is the president.  He has taken up the study of aeronautics for the purpose of furthering the science of astronomy, believing that the scope of the latter will be enlarged to a limitless degree when astronomers are able to sail above the clouds.  

A Famous Gathering    

     The best known of the scientists who will attend the convention are Herr Otto Lilienthal, of Berlin; Willis L. Moore, Chief of the United States Weather Bureau; A. S. Potter, also of the Weather Bureau’s staff; William A. Eddy, whose many experiments in kite flying have made him famous; J. Woodbridge Davis, inventor of the life-saving kite; Octave Chanute, who has been a recognized authority on flying machines for more than fifty years; Professor S. P. Langley, director of the Smithsonian Institution; Gilbert T. Woglom, of New York; Alexander Graham Bell, of telephone fame, who within the past year or two has given much time to the study of aerial navigation, and possible Laurence Hargrave, of New South Wales.

     Much of the work for the convention arrangements have fallen upon Albert A. ????? will probably take place at Milton, a suburb of Boston.  The reason of the selection of Milton is that there is a fair sized sheet of water near at hand.  All aeronauts have a weakness for making ascents in the vicinity of water.  Experience has taught them that it is pleasanter to fall a few hundred feet into deep water than to smash into the earth.  It is quite probable that if no water were near at hand many of the designers would refuse to show off their flying machines at the competition.

The Competition

     The various contests are classified as follows:

     Prize A – For the kite showing the maximum of lift to the minimum of drift in a breeze having a velocity of more than fifteen miles per hour.

     Prize B – For the kite showing the maximum of lift to the minimum of drift in a breeze having a velocity of less than fifteen miles per hour.

     Prize C – For the kite keeping its equilibrium through the greatest extremes of wind velocity.

     Prize D – For the soaring machine of free flight which, after gaining velocity, shall make the best course.  The excellence of the course to be judged by the maximum length and the minimum of undulation.  Energy may be given to the machine by carrying it to a height. 

     Prize E – For the best self-propelled machine.    

One of Professor Langley’s Flying Machines

     The great interest will center in the flying machines, and according to experts this feature of the program will be a duel between the designs of Professor Langley, of Washington, and Herr Lilienthal, of Berlin.  Professor Langley’s machine is a contradiction of the principles recognized by all of the other designers of flying machines.  In other words, the aim of the average designer is to produce a machine lighter than the air.  Professor Langley believes that the weight of the machine has nothing to do with its flying capacity.  He claims that the great essential is the driving force.  If enough power can be introduced, he argues that a machine of any weight can be driven through the air.

     It was the lowly turkey buzzard that gave this idea to Professor Langley.  On this subject he says; “Did you ever think what a physical miracle it is for such a bird as one of our common turkey buzzards to fly in the way it does?  You may see them any day along the Potomac, floating in the air, with hardly the movement of their feathers.  These birds weigh fro five to ten pounds; they are far heavier than the air they displace; they are absolutely heavier than so many flatirons.”    

A Mysterious Machine       

     Professor Langley has been most reticent about the construction of his machine.  He uses steam as a driving power.  It is in the distribution and form of the solid matter, he says, which allows it to float through the air, and the greater the speed attained the less danger there is of the machine falling.  Less than three months ago Professor Langley sent a small machine on a flight of nearly half a mile through the air in the presence of Alexander Graham Bell.  The machine was built of steel, weighed 24 pounds and measured 14 feet from end to end.  It was 1,000 times heavier than the air supporting it.  Great secrecy attended the experiment, and the world would probably have never known of it had it not been for the enthusiasm of professor bell.  Professor Langley is now at work on a larger and heavier machine, in which the driving power will be much greater.  It is possible that the new machine will be exhibited at the Boston convention.

The Lilienthal Idea  

     Professor Langley does not believe that man has sufficient strength  to fly with artificial wings.  His rival, Herr Lilienthal, does.  His machines are constructed on that idea.  With the Lilienthal machine it is necessary to start the flight from a high hill.  The flyer buckles on the machine, takes a sharp run and jumps into space.  The big wings on the machine are supposed to do the rest.  The novice, when he runs and jumps, usually hits the ground with his face.  Herr Lilienthal has had an artificial hill fifty feet high built near his home at Gros Lichterfelde, a suburb of Berlin.  From this eminence he has made repeated flights of 250 yards.    

 

 

     

 

         

 

 

Boston Kite Flying Experiments – 1890s

Boston Kite Flying Experiments of the 1890s

     Kite flying experiments intended to further the study of meteorology and aeronautics, as well as influence possible designs for future flying machines, were conducted in the 1890s at the Blue Hills Observatory in Milton, Massachusetts.  The program was administered by the Boston Aeronautical Society, an organization that was founded in the spring of 1895.  The society initially consisted of about twenty members, each considered an expert in their field of research. 

     The mission of the society was to encourage experiments with aerial “machines”, (not necessarily mechanical) and to collect and disseminate knowledge relating to solving the problems of aerial navigation, for it was still a time when manned mechanical flight had not yet been perfected.

     In April of 1896 it was announced that the society had decided to include in its mission the encouragement of research and development of kite design.  As an incentive, the society offered monetary prizes for kites that could perform in certain ways.   

     The kites used in the Blue Hills experiments weren’t toys, but large, well designed, scientific instruments meant to fly at high altitudes to gather atmospheric readings.  On July 4, 1896, it was stated in the Evening Star, a Washington D. C. newspaper, “The Boston Aeronautical Society holds that the kite is a scientific instrument of value, and worthy the attention of those who take an interest in scientific equipment.”

      Some of the kite experiments resulted in kite-altitude records being set. On July 21, 1896, what was described as a “flight of kites” was sent up from the Blue Hills Observatory.  The kites were strung together in tandem, and the uppermost kite soared to the record breaking height of 7,200 feet above sea level according to the altimeter device which had been attached to the string below it.  The observatory, it was said, is situated at 625 feet above sea level.

     During another flight the string connected to the kites broke while they were 2,000 feet in the air, sending them and the attached instruments sailing off and out of sight.  They were later recovered three miles away from their starting point. 

     On August 1st a new kite-altitude record was achieved when a string of kites reached 7,333 feet.   The event was witnessed by fifty members of the Appalachian Club. 

     Not long afterward, a new altitude record of 7,441 feet was established.    

This illustration of William Eddy’s kite configuration as he photographed Boston from above appeared in newspapers of the day.

     One man who came to Boston to participate in the Blue Hills kite experiments was William Abner Eddy, (1850-1909), of Bayonne, New Jersey.  Eddy was the inventor of the “Eddy Kite”; a some-what diamond shaped kite of large proportions which lacked a tail. 

     In August of 1896, Eddy arrived with twenty-two of his kites with the intention of taking aerial photographs of Boston by suspending a camera in the air and working the shutter remotely from the ground.  Mr. Eddy was already credited with taking the first aerial kite photograph in the United States in Bayonne, N.J., on May 30, 1895. 

     Eddy began his photographic trials over Boston on Monday, August 24, from the roof of the post office building, and continued them throughout the week.  The first picture was taken from an altitude of 400 feet, the second at 700 feet, and the next four at 500 feet.

     On August 25, as Eddy was attempting to take his seventh aerial picture over the city, the string to the kites broke, sending all nine kites and his camera crashing to the street, but it was reported that it did not appear that the camera was too badly damaged, or the film compromised.     

     When all of the film plates were later developed, it was found that Mr. Eddy had captured some great aerial views of the Boston Common area, Beacon Street, Commonwealth Avenue, Tremont and Washington Streets, and the Charles River.  Some were taken from an altitude of 1,500 feet.       

     The kites Mr. Eddy employed for the project measured seven feet in diameter and between four to eight were flown at the same time depending on the wind. 

     Besides his camera, Mr. Eddy also attached a self-registering thermometer to record temperatures at different altitudes above the city to be compared with temperatures above the Blue Hills Observatory from kites being flown there during the same time.      

     In the autumn of 1896 further kite experiments were conducted at the Blue Hills Observatory to gather meteorological data.  In these experiments, nine kites attached by piano wire and carrying meteorological instruments reportedly rose to nearly 9,000 feet. 

     One newspaper, The Austin Weekly Statesman, described the process: “The kites were three in number, all of them on this occasion of the Eddy pattern, two of them being at the end of the line and the third some hundreds of feet below.  The kites were of large size, two of them being six feet in their largest dimension, and the third one a monster of nine feet, presenting some 65 square feet of surface to the wind.  This varied from 18 to 31 miles per hour at the surface, and the pull of the wire which held the kites mounted at times to upwards of 125 pounds.” 

      Sources:

     Courier Democrat, (Langdon, N.D.), “Taken From A Kite – Ingenious Method Of Taking Photographs”, August 1, 1895

     Evening Star, (Washington, D. C.), “Kites And Science”, July 4, 1896 

     The Topeka State Journal, (Topeka, Kansas), “Cloud Tourists – Aeronauts Will Hold A Unique Convention In Boston”, July 18, 1896

     The Topeka State Journal, “New Kite Record”, July 25, 1896  

     The Herald, (Los Angeles, CA.), “Great Kite Flying”, August 2, 1896

     The Evening Times, (Washington, D.C.), “Photos From The Sky”, August 24, 1896

     The Sun, (New York, N.Y.), “Eddy’s Kite String Broke”, August 26, 1896

     The Roanoke Daily Times, (Roanoke, VA.), “Kite Photograph Of Boston”, August 27, 1896 

     Waterbury Democrat, (Waterbury, Ct.), “Mid-Air Photographs”, August 28, 1896 

     The Austin Weekly Statesman, (Austin, TX.), “High Kite Flying In Boston”, October 1, 1896  

     The Chicago Eagle, (No Headline), October 31, 1896

 

The Boston Aeronautical Manufacturing Co. – 1909

The Boston Aeronautical Manufacturing Company – 1909

     The following newspaper articles relate to the Boston Aeronautical Manufacturing Company, of which little is known.  

     The following article appeared in The Bridgeport Evening Farmer, (Bridgeport, CT.), on December 23, 1909.  

     NEW AIRSHIP TO CROSS ATLANTIC IN TWO DAYS

     Boston, Dec. 23 – A new airship intended to carry a dozen or more people and expected by the inventor to be capable of going to New York with the greatest ease, and later of making a trip across the Atlantic in two days, is promised by a new Boston flying machine concern, the Boston Aeronautical Manufacturing Company, just incorporated here with a capital of $500,000.

     The president of the new company is Frank S. Corlew of the Corlew-Coughlin Motor Company, and its vice president and engineer, Albert Gouldhart, inventor of the new machine.  Mr. Gouldhart is now completing the machine with which he will make the first flight about May 30.

     The machine will weigh 800 pounds and will have a lifting capacity of 2,500 pounds. 

     Mr. Gouldhart says that the machine will rise in its own space perpendicular from the starting point and without any assistance outside of its own power to about 5,000 feet, although it is said almost any height may be attained.  At this point the airship will keep as nearly as possible on that same level until it has attained a speed of 75 miles an hour.  Then the planes will be set so as to attain a gradual descent, the power shut off and the machine, with its initial velocity will glide rapidly toward the earth and to within a few hundred feet, then will be shot up again.  While gliding or coasting, the inventor expects to keep a speed of about 40 miles an hour.    

     The following article appeared in The Spokane Press, (Spokane, WA.), December 31, 1909.  

LANDING PLACES FOR FLYING MACHNES IN BOSTON

     Boston, Dec. 31 – Aeroplanists sailing Bostonward next spring need not suspend their journeys on the outskirts of the city but can fly into the heart of the downtown section, for a flying machine landing is to be established for them.  It will be on the top of the large five-story building on Hawkins Street, known as the Sudbury Garage, and plans are now being made to provide all the necessary facilities for the landing and starting of different types of aeronautical craft on the broad roof of the building.  To conduct this station and also to build a new type of flying machine the Boston Aeronautical Company has been incorporated with $500,000 capital.  

 

Charles B. Whittlesey’s Airship – 1908

Charles B. Whittlesey’s Airship – 1908

 

     In or about August of 1908, Charles B. Whittlesey Jr., Age 9, of Hartford, Connecticut, saw plans for building a dirigible airship in a Sunday newspaper.  The plans didn’t seem too complicated, so he brought the matter to his father, Charles Sr., who was superintendent of the Hartford Rubber Works.  Mr. Whittlesey liked the idea of building a scale-model airship, and figured it would be good publicity for the rubber company. 

     After enlisting the help of several workers, construction was begun in a vacant area of the factory.  The finished airship had a cigar shaped gas bag that was eight-and-a-half feet long, and eighteen inches in diameter, made of “Indian Mull” and covered with rubber cement.  It could hold fourteen cubic feet of gas. 

     A framework was suspended beneath the gas-bag which held a small battery operated “Rex” motor that drove a four inch wide, three-blade wooden propeller 300 revolutions per minute.         

     The entire airship weighed slightly less than four pounds.

     When completed, the airship was named the “Hartford 1”. 

     Initial testing was done in November of 1908, and several successful flights were made in the back lot of the factory.  The gas bag wasn’t large enough to lift the ship to any great height, and the ship lacked a rudder, but Mr. Whittlesey could see the potential and planned to make improvements on the initial design.   

     The Hartford 1 was presented to Charles Jr. on his birthday, November 24, 1908. 

     Source:

     Hartford Courant, “The First Airship Made In Hartford”, November 24, 1908.       

The Aerial Construction Company Of Hartford – 1911

The Aerial Construction Company Of Hartford – 1911

     The Aerial Construction Company of Hartford, Connecticut, was established in September of 1911 for the purpose of building a commercial airship of German design that could carry passengers.  The business office was located at 212 Asylum Street, Room 10, in Hartford.

     The company started with $50,000 in capital.

     The officers of the company were listed as: President, F. W. Dart; Vice-President, F. W. Stickle; Treasurer, F. C. Billings; Secretary, H. Franklin Wells; managing Director, Joseph K. Kopacka, all of Hartford.

     The company’s Chief Engineer was listed as John Twardus of Germany, who was known for his work in aeronautics.   

     The company announced plans to begin construction of its first airship, to be named “The Hartford Flyer”, as soon as possible.  The Hartford Flyer  would have a 135 foot long cigar-shaped gas-bag with a car situated underneath capable of carrying seven passengers and a pilot. The ship would be powered by a 75 h.p. motor capable of driving it through the air at forty to fifty miles per hour.

     It is unknown if this airship was completed.  

     Source:

     Hartford Courant, “A New Commercial Airship”, September 19, 1911

Harvard University Aeronautical Society – Harvard 1

Harvard University Aeronautical Society – Harvard 1

Vintage postcard view of a

Curtiss Airplane

      The Harvard University Aeronautical Society was established in November of 1909 with 250 charter members.  In 1910 the society constructed its own airplane, a Curtiss style biplane called the “Harvard 1”.  It was the first airplane to be owned by any college or university in America.  

     The following newspaper articles relate to the “Harvard 1”  

*********

     The following newspaper article appeared in The Caucasian, (Shreveport, La.), on January 25, 1910.   

     HARVARD TO BUILD AN AEROPLANE

     All the materials and accessories necessary to the construction of a first class, full size aeroplane have been ordered by the Harvard University Aeronautical Society.  J. V. Martin, director of the organization, has been authorized to make such purchases as he may deem necessary to build a two passenger biplane.  Plans of the machine have already been completed.  When it comes time to manufacture the various parts needed in the construction of the aeroplane the work will be done by undergraduates in the Harvard engineering and scientific departments, and the assembling of the machine will also be under their charge.    

*********

     By June of 1910 the Harvard 1 was ready for testing.  The following article appeared in The Bridgeport Evening Farmer, (Bridgeport, Ct.), on June 14, 1910.

HARVARD’S AEROPLANE HAS TRIAL FLIGHT ON SOLDIERS FIELD TODAY

     Boston, June 14 – Harvard’s new aeroplane, the first flying machine owned by any college in America, went for the first time under its own power in a series of engine testing feats on Soldiers Field today.  The Harvard I, as it has named, did not leave the ground, and the attempt to fly will not be made until tomorrow morning, when if the weather is propitious, the machine will have further tests.

     In the trials this morning the aeroplane simply covered the length of the field four times on the rubber-tired wheels with which it is equipped for starting purposes.  The engine proved able to drive the propeller at 1,200 revolutions per minute and to develop in the propeller a thrust of 190 pounds.

     The aeroplane developed speed quicker than an automobile and within 100 yards was going at about 20 miles per hour.

*********

     The following article appeared in The Washington Times, (Washington D.C.),  on July 11, 1910.

HARVARD AEROPLANE MAKES TWO FLIGHTS

     Boston, July 11 – Harvard aeroplane No. 1 made two fairly successful flights on Soldiers Field today.  In the first the machine traveled fifty yards.  Fifteen minutes later the machine went an estimated distance of 150 yards.  During the first flight an altitude of four or five feet was attained and in the second flight about eight feet.

     When descending from the second flight the machine landed on the left rear wheel, breaking it and disabling the machine for further use today.  It was operated by J. B. martin.  the Harvard Aeronautical Association has announced that it will build another machine of the passenger-carrying type.  

*********

     The following article appeared in The Bridgeport Evening Farmer, (Bridgeport, Ct.), on July 12, 1910, page 4. 

     HARVARD AEROPLANE IS AGAIN SMASHED

     Boston, Mass., July 12 – Harvard aeronauts today are busily engaged patching up their aeroplane Harvard I which has again been smashed after twice getting off the ground in the first flights of its erratic career.  In the latest attempt the flier covered 100 yards at about five to eight feet from the ground.  The was preceded by a trip of 50 yards. 

     As the ship was making good speed towards the bleechers it collapsed, landing on the left rear wheel and straining a wire.  In a subsequently attempted flight, this wire snapped.  The Harvard Aeronautical Club proposes to begin working on a passenger ship within a week. The latter craft, together with the Harvard I, will compete in the aero meet this coming September at the stadium.

*********

     (The aero meet referred to was the famous Harvard-Boston Aero Meet of 1910.)

*********

     The following article appeared in the New York Tribune, August 27, 1910, page 4.

WIND DAMAGES AEROPLANES

     Boston, Aug. 26 – The two flying machines now assembled on the aviation field at Atlantic, where, from September 3 to 13, is to be held the Harvard-Boston Aero Meet, were almost carried off to-day by a gale of wind during a heavy rainstorm. The machines – the Harvard I aeroplane and the Pfitzner monoplane – were stripped clear of the their covering, and the monoplane lost its wings.

     H. F. Kearney, an aviator, of Missouri, who is to fly the Pfitzner monoplane, had expected to make his first flight on the Atlantic field to-day, but the storm forced him to abandon the attempt. 

     Cromwell Dixon, in his dirigible airship, declares that on Tuesday he is going to try to fly from Boston to Plymouth, more than forty miles, landing as near Plymouth Rock as possible.  later he intends to retrace Paul revere’s historic ride through Middlesex County towns , to circle Bunker Hill Monument and to maneuver over the navy yard at Charlestown and over vessels in the harbor, dropping imitation bombs.

*********

     Other Sources:

     The Pacific Commercial Advertiser, “Harvard Men To Build Biplane”, February 26, 1910, page 6.

Return to Top ▲Return to Top ▲